Sitemap
Extends from the WebBaseLoader
, SitemapLoader
loads a sitemap from a given URL, and then scrapes and loads all pages in the sitemap, returning each page as a Document.
The scraping is done concurrently. There are reasonable limits to concurrent requests, defaulting to 2 per second. If you aren't concerned about being a good citizen, or you control the scrapped server, or don't care about load you can increase this limit. Note, while this will speed up the scraping process, it may cause the server to block you. Be careful!
Overview
Integration details
Class | Package | Local | Serializable | JS support |
---|---|---|---|---|
SiteMapLoader | langchain_community | ✅ | ❌ | ✅ |
Loader features
Source | Document Lazy Loading | Native Async Support |
---|---|---|
SiteMapLoader | ✅ | ❌ |
Setup
To access SiteMap document loader you'll need to install the langchain-community
integration package.
Credentials
No credentials are needed to run this.
If you want to get automated best in-class tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
Install langchain_community.
%pip install -qU langchain-community
Fix notebook asyncio bug
import nest_asyncio
nest_asyncio.apply()
Initialization
Now we can instantiate our model object and load documents:
from langchain_community.document_loaders.sitemap import SitemapLoader
sitemap_loader = SitemapLoader(web_path="https://api.python.langchain.com/sitemap.xml")
Load
docs = sitemap_loader.load()
docs[0]
Fetching pages: 100%|##########| 28/28 [00:04<00:00, 6.83it/s]
Document(metadata={'source': 'https://api.python.langchain.com/en/stable/', 'loc': 'https://api.python.langchain.com/en/stable/', 'lastmod': '2024-05-15T00:29:42.163001+00:00', 'changefreq': 'weekly', 'priority': '1'}, page_content='\n\n\n\n\n\n\n\n\n\nLangChain Python API Reference Documentation.\n\n\nYou will be automatically redirected to the new location of this page.\n\n')
print(docs[0].metadata)
{'source': 'https://api.python.langchain.com/en/stable/', 'loc': 'https://api.python.langchain.com/en/stable/', 'lastmod': '2024-05-15T00:29:42.163001+00:00', 'changefreq': 'weekly', 'priority': '1'}
You can change the requests_per_second
parameter to increase the max concurrent requests. and use requests_kwargs
to pass kwargs when send requests.
sitemap_loader.requests_per_second = 2
# Optional: avoid `[SSL: CERTIFICATE_VERIFY_FAILED]` issue
sitemap_loader.requests_kwargs = {"verify": False}
Lazy Load
You can also load the pages lazily in order to minimize the memory load.
page = []
for doc in sitemap_loader.lazy_load():
page.append(doc)
if len(page) >= 10:
# do some paged operation, e.g.
# index.upsert(page)
page = []
Fetching pages: 100%|##########| 28/28 [00:01<00:00, 19.06it/s]
Filtering sitemap URLs
Sitemaps can be massive files, with thousands of URLs. Often you don't need every single one of them. You can filter the URLs by passing a list of strings or regex patterns to the filter_urls
parameter. Only URLs that match one of the patterns will be loaded.
loader = SitemapLoader(
web_path="https://api.python.langchain.com/sitemap.xml",
filter_urls=["https://api.python.langchain.com/en/latest"],
)
documents = loader.load()
documents[0]
Document(page_content='\n\n\n\n\n\n\n\n\n\nLangChain Python API Reference Documentation.\n\n\nYou will be automatically redirected to the new location of this page.\n\n', metadata={'source': 'https://api.python.langchain.com/en/latest/', 'loc': 'https://api.python.langchain.com/en/latest/', 'lastmod': '2024-02-12T05:26:10.971077+00:00', 'changefreq': 'daily', 'priority': '0.9'})
Add custom scraping rules
The SitemapLoader
uses beautifulsoup4
for the scraping process, and it scrapes every element on the page by default. The SitemapLoader
constructor accepts a custom scraping function. This feature can be helpful to tailor the scraping process to your specific needs; for example, you might want to avoid scraping headers or navigation elements.
The following example shows how to develop and use a custom function to avoid navigation and header elements.
Import the beautifulsoup4
library and define the custom function.
pip install beautifulsoup4
from bs4 import BeautifulSoup
def remove_nav_and_header_elements(content: BeautifulSoup) -> str:
# Find all 'nav' and 'header' elements in the BeautifulSoup object
nav_elements = content.find_all("nav")
header_elements = content.find_all("header")
# Remove each 'nav' and 'header' element from the BeautifulSoup object
for element in nav_elements + header_elements:
element.decompose()
return str(content.get_text())
Add your custom function to the SitemapLoader
object.
loader = SitemapLoader(
"https://api.python.langchain.com/sitemap.xml",
filter_urls=["https://api.python.langchain.com/en/latest/"],
parsing_function=remove_nav_and_header_elements,
)
Local Sitemap
The sitemap loader can also be used to load local files.
sitemap_loader = SitemapLoader(web_path="example_data/sitemap.xml", is_local=True)
docs = sitemap_loader.load()